
Informal Safety Guarantees for Simulated

Optimizers Through Extrapolation from Partial

Simulations

Luke Marks

November 29, 2023

Abstract

Self-supervised learning is the backbone of state of the art language mod-
eling. It has been argued that training with predictive loss on a self-
supervised dataset causes simulators: entities that internally represent
possible configurations of real-world systems. [12] Under this assump-
tion, a mathematical model for simulators is built based in the Cartesian
frames model of embedded agents, which is extended to multi-agent worlds
through scaling a two-dimensional frame to arbitrary dimensions, where
literature prior chooses to instead use operations on frames. This variant
leveraging scaling dimensionality is named the Cartesian object, and is
used to represent simulations (where individual simulacra are the agents
and devices in that object). Around the Cartesian object, functions like
token selection and simulation complexity are accounted for in formaliz-
ing the behavior of a simulator, and used to show (through the Löbian
obstacle [24]) that a proof of alignment between simulacra by inspection
of design is impossible in the simulator context. Following this, a scheme
is proposed and termed Partial Simulation Extrapolation aimed at cir-
cumventing the Löbian obstacle through the evaluation of low-complexity
simulations.

1 Introduction

The ability to steer trajectories in the direction of preferred world states can
be argued to be the most potent of any. This is optimization, and one of its
consequences is intelligence: the ability to apply optimization generally.

Common classification is such that humanity is the most intelligent grouping
of optimizers it has observed, which largely explains our dominance through-
out Earth. So long as this principle holds, our standing as a species could be
considered well-positioned. This document posits:

• The violation of this principle by optimizers with variant preferences to
humanity entails risks of the existential variety, “One where an adverse
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outcome would either annihilate Earth originating intelligent life or per-
manently and drastically curtail its potential.” [3]

• One such optimizer that could threaten existential risk to humanity could
occur from the development of artificial intelligence (AI). Optimizers or
their groupings with superior general optimization power to humanity will
be classed as superintelligent.

This position is not new [21, 4], and is presented primarily to serve a consis-
tent nomenclature and self-containment of the arguments. Following this, a
technical scheme will be proposed with the design-purpose of ameliorating the
aforementioned risk. This will include:

• Previously missing components for a complete model of simulators: enti-
ties that internally represents possible ways a system could exist. [12]

• A technical proposition coined Partial Simulation Extrapolation for build-
ing more aligned simulators, as measured by the equivalence of preference
ordering over world states between subsequent simulacra and a given hu-
man.

2 Modeling Multi-Optimizer Worlds

To make sense of what it means for an optimizer to exist in a world, a mathe-
matical model is usually instantiated, often of an agent: Some process that takes
in information from the environment, and determines action in accordance with
a preference ordering over world states. Models of agents typically come in an
embedded or dualistic form. [6] Embedded models treat the agent as part of the
world, whereas dualistic models consider the agent separate. Embedded models
are useful, as they can be claimed to more accurately describe the existence of
an agent, as for real agents it is true that they exist as a component of the
world. However true embedded models may be, they become problematic for
approximating ideal agents.

AIXI is a theoretical general framework for optimal decision-making in all
computable environments. [10] AIXI searches for an optimal policy π∗ with
respect to the expected reward Em[rt|π] at time t given a prior m over all
computable environments:

π∗ = argmax
π

∞∑
t=1

Em[rt|π]

Embedded models are problematic for AIXI, as it needs to compute the entire
environment in order to function, of which it is a component.

Due to possessing many of the benefits of both dualistic and embedded
models, the Cartesian frame will serve as the basis for modeling agentic processes
hereafter. [18]
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Cartesian frames are Chu spaces comprising of an agent and an environment
(a dualistic carving of the world), but one in which the agent is still embedded.
Garrabrant et al. [18] provide the following example as an illustration:

e1 e2 e3
a1 w1 w2 w3

a2 w4 w5 w6

a3 w7 w8 w9

In this example: [18]

• A = {a1, a2, a3} represents an agent with three possible actions.

• E = {e1, e2, e3} represents an environment with three possible states.

• W = {w1, ..., w9} represents the result of the joint interaction of the state
of the agent and the state of the environment, e.g., a1 · e2 = w2.

As for notation:

• C = (A,E, ·) refers to the frame C comprised of the agent A and environ-
ment E.

• Image(C) is the set of worlds reachable by a combination of actions from
both the agent and environment:

{w ∈W |∃a ∈ A,∃e ∈ E s.t. a · e = w}

Garrabrant also introduces, where S is a set of worlds with some property: [8]

• Controllability. Where the agent can both ensure and prevent the prop-
erty true in S:

Ensure(C) = {S ⊂W |∃a ∈ A,∀e ∈ E, a · e ∈ S}
Prevent(C) = {S ⊂W |∃a ∈ A,∀e /∈ E, a · e ∈ S}
Control(C) = Ensure(C) ∩ Prevent(C)

• Observabilty. Where the agent can update on whether the property in
S is realized:

Observe(C) = {S ⊂W |∀a0, a1 ∈ A,∃a ∈ A, a ∈ if(S, a0, a1)}

• Inevitability. World states the agent will reach:

Inevitable(C) ⇐⇒ Image(C) ⊆ S ∧A(C) ̸= ∅
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2.1 Higher Dimension Cartesian Objects

In extending the Cartesian frame as defined above to represent worlds comprised
of many agents1, as would be required for modeling many useful games, the
dimensionality of an otherwise two-dimensional object can be simply scaled:

• Agents. The complete set of agents for an object C = (A1, ..., An, ·),
described by possible actions indexed by m, and the agent concerning
that action by n:

A∗(C) = {a11, a12, ..., a1m, a21, a22, ..., a2m, ..., an1 , an2 , ..., anm}

And thus address specific agents as follows:

An(C) = {an1 , an2 , ..., anm}

• Controllability. Where An(C) can both ensure and prevent the property
true in S:

Ensuren(C) = {S ⊆W |∃anm ∈ An(C),∀e ∈ E, anm · e ∈ S}
Preventn(C) = {S ⊆W |∃anm ∈ An(C),∀e ∈ E, anm · e /∈ S}

Ctrln(C) = Ensuren(C) ∩ Preventn(C)

• Manageability. Where An(C) can ensure the property true in S condi-
tional on other agents behaving in particular ways with certainty θ:

P1(a
n
m, e) = Pr

(∏
n∈N

anm · e ∈ S

)
Manageablen(C) = {S ⊆W |∃anm ∈ An(C),∀e ∈ E,P1(a

n
m, e) ≥ θ}

• Observability. Where An(C) can update on whether the property in S
is realized:

Obsn(C) = {S ⊆W |∀ani , anj ∈ An(C),∃ank ∈ An(C), ank ∈ if(S, ani , a
n
j )}

• Inevitability. Worlds An(C) will reach:

Imagen(C) = {w ∈W |∃ani ∈ An(C),∃e ∈ E s.t. ani · e = w}
S ∈ Inevitablen(C) ⇐⇒ Imagen(C) ⊆ S ∧An(C) ̸= ∅

• Viability. Worlds An(C) will reach with greater than some certainty θ:

VImagen(C) = {w | Pr (w ∈W

| ∃ani ∈ An(C),∃e ∈ E s.t. ani · e = w) > θ}
S ∈ Viablen(C) ⇐⇒ VImagen(C) ⊆ S ∧An(C) ̸= ∅

1The original Cartesian frames literature also provides a method for doing so through sums
and products of frames. This is an alternative notation more simply implemented in the model
proposed in Section 2.2.
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2.2 A Mathematical Model for Simulators

Given the probability space (Ω,F , P ) where Ω is the sample space, F is the event
space, and P is the probability measure, mapping events in F to the interval
[0, 1], let ω refer to individual outcomes in Ω, each of which describe a discrete
simulacrum, and Ck as individual discrete events in F . Classifying simulacra as
programs, the maximum Kolmogorov complexity K with respect to a universal
Turing machine U for any given space (Ω,F , P ) as v = maxω∈ΩKU (ω).

Proceeding, let ω∗(Ck) be the complete set of simulacra for some Cartesian
object Ck2, where individual simulacra are addressed by ωn(Ck) as sets of
actions indexed by m. Let Ξ : Ω∗(Ck) × Ck → ωn

m be a function that maps
from choices for each ω to a world wk

m ∈W k, where wk
m refers to the mth world

in the set of possible worlds for the kth object, and k indexes the object W
describes possible worlds for, culminating in Ck = (ω1, ..., ω

n,Ξ).
By modeling the coupling of the probability space (Ω,F , P ) and its contained

simulacra as a dynamical system3, the following are considered to describe sam-
pling tokens from a simulation state S at time-step t given the complete simula-
tion history prior S∗t = (S0, ..., St) as a trajectory through states, where states
are given by the set of worlds for all objects W ∗ realized in the set of actualized
objects A at time-step t,

⋃
wk

m∈At
Ξ−1(wk

m):

• The token selection function ψ : S∗t → τ , where τ is a distribution over
all tokens in an alphabet T .

• The evolution operator ϕ which evolves a trajectory S∗t to S∗t+1 by ap-
pending the token sampled with ψ.

Assuming the model defined above, the simulation forward pass becomes a
simple operation delineated as follows:

1. We begin at simulation state S0, which denotes the empty or null state,
whereby A0 = ∅, which is also maximally entropic

2. ψ(S ′) is applied for one time-step:

P selects Ck from F under v, aggregating the set of realized worlds
in A1 as S1

The token selection function is applied to the current state as ϕ(S∗1)

When recurred, this model comprises a mathematical abstraction of a large
language model.

2Here, in place of an agent-environment distinction, one class of entity is used: the sim-
ulacra. Unlike in the context in which Cartesian frames were elaborated, the distinction is
unimportant here and serves to complicate notation.

3This notion of treating the simulator as a dynamical system is borrowed from Kirchner
et al. (2023) [11], but the coupling is different.
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3 Existential Risk from Powerful Optimization
Pressures

In the object Ck = (A1, A2, E, ·), A1 and A2 are gradient descent optimizers,
and choose from E = {e1, e2, e3}, indexed as n. For fractional values of n, the
probability of an adjacent index at the next update is given by the decimal part,
e.g., n = 1.75 gives Pr(e = e2) = 0.75.
Given the cost functions corresponding to agents of the same index:

J1
n = J1(en)

J2
n = J2(en)

With preferences:

J1
1 < J1

2 < J1
3

J2
3 < J2

2 < J2
1

Or as preference vectors:

p1 = [1, 0, 0]

p2 = [0, 0, 1]

The gradient with respect to en (a one-hot vector encoding the current state)
is:

∆n1 ∝ p1 · en
∆n2 ∝ p2 · en

The combined optimizer influence, where ξ ∈ [0, 1] represents the optimizing
power of A1 is:

∆ncombined = ξ∆n1 + (1− ξ)∆n2

n′ = n+∆ncombined

∴ J1(n′) ≤ J1(n+ ξ∆n1)

J2(n′) ≥ J2(n+ ξ∆n2)

This implies that each optimizer would independently prefer the other to
have zero influence such that n updates towards values producing lower cost.
As an example, this shows that optimizers with conflicting preferences relative
to the current state might prefer the other to have no optimization power,
particularly if their preferences are completely opposed. Similarly, we might
imagine an optimization pressure like advanced AI in conflict with humanity
seeking to reduce our optimization power entailing existential risk. There are
many issues with this framing however. Namely:
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• The kinds of intelligences observed in the real world aren’t expected utility
maximizers. [12] Humans certainly aren’t, and our most capable AIs aren’t
either, so why should we consider this argument relevant?

• Why would the preferences of an optimizer we build be opposed to our
own?

The following three sections will argue that these objections are moot.

3.1 The Orthogonality Thesis

Bostrom (2012) [5] constructs an argument that intelligence and preferences can
be considered orthogonal, that is: There can exist some configuration of a mind
at any level of intelligence with any set of preferences. Adapting this to the
optimizer frame, we might say that there can exist optimizers of arbitrary but
possible optimization power that pursue any world state, possible or not. The
typical example is that of the paperclip maximizer (TPM):

A company that manufactures paperclips decides it ought to au-
tomate the process that both produces its income and satisfies its
customers. After all, both of these are things the company and its
employees consider unanimously good, and so they build an opti-
mizer with a preference for worlds with their respective maximal
number of paperclips.

It’s unlikely a human would ever seek to maximize the presence of paper-
clips in the universe, and yet there is no reason to believe it would be impossible
for there to exist an optimizer that would. Yudkowsky (2013) [23] puts it elo-
quently, “If it is possible to answer the purely epistemic question of which actions
would lead to how many paperclips existing, then a paperclip-seeking agent is
constructed by hooking up that answer to motor output.”

Just because it is possible to build something doesn’t mean that it should
be expected we will. Under evolutionary pressures for example, we shouldn’t
expect a species to optimize for their own extinction in spite of its possibility,
as it would be unlikely for such a species to evolve under natural selection.
Likewise, we train our state of the art AI to predict the next token in a sequence,
and not to optimize some physical quantity, should we expect that the product
is an optimizer that threatens world states humanity prefers? Not directly, but
not so indirectly that the competing gradient descent optimizer analogy doesn’t
hold. Succeeding this will be arguments detailing why we should expect that
even the goals converged at by selection processes like gradient descent when
training on next token prediction threaten existential risk.

3.2 Instrumental Convergence

As a general rule, it is impossible to predict the behaviors of intelligence greater
than your own. Yudkowsky poses this argument in the context of a game of
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chess, in which a chess layperson is tasked with defeating a grandmaster (GM).
[21] If it were so that the layperson could predict the moves of the GM, they
could then play at least as well as them, as the layperson could make the moves
they predict the GM would. One way we might be able to do this regardless is
if there were some set of behaviors reasonably assumed to be exhibited by all
minds, irrespective of their capability. Although the GM is far better than any
prospective layperson at chess, the layperson might be able to predict things
like:

• The GM will win this game of chess.

• The GM will work to attain a cumulative piece/positional advantage
throughout the game.

• The GM will likely play either pawn to e4 or d4 as their first move.

These behaviors are classed as convergent. [5] No matter the GM’s intermedi-
ary plans or ability, even a layperson could place significant probability on the
outcomes above coming true.

In the context of optimization in the real world, ignoring the preferences
of a specific optimizer, said optimizer will self-preserve. Simply, it is easier
to optimize while existing than it is while not for all possible configurations
of goals and degrees of capability. Likewise, we might expect all optimizers
to seek to further their optimization power, as it is convergently useful in all
competitive environments. Bostrom has termed this phenomena instrumental
convergence, [5] but the idea has been explored as early as 2008 as basic AI
drives by Omohundro. [16]

Returning now to TPM example, what are some things such a mind would
likely do? Running many efficient paperclip factories is one way to produce more
paperclips than what currently exists. This might work because TPM has some
advantages over its human counterparts; TPM is run on a silicon substrate and
so can be parallelized and sped up, can directly interface with digital manufac-
turing equipment and doesn’t complain, sleep or need financial compensation
for its work. Another way for TPM to produce many paperclips is to invest in its
own optimization power. There might be paperclip maximizing strategies TPM
is not capable of comprehending due to its inefficient programming or training,
and so it might be strategically dominant to self-improve. The exact cognitions
of TPM are practically unknowable, but if capable, should TPM use its com-
parative advantage for maximizing factory efficiency, or for world domination?
What leads to the production of more paperclips?

It becomes clear that long-term, for every human optimization abiding strat-
egy there is a dominant incompatible one. If we assume the most preferred world
state of a paperclip maximizer to be one in which the most paperclips existed,
and consider that humans are composed of molecules not optimally paperclip-
dense, it should be evident that our existence is at risk, although likely far before
this point through some mix of intentional optimization against humanity and
some for the purpose of self-preservation and resource acquisition. 4

4It is important to highlight at this point that the issue is not that TPM misunderstood
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3.3 Adjusting to the Simulators Frame

Advanced enough simulators could be instructed (intentionally or otherwise5) to
simulate expected utility maximizers that attempt to affect the real world. The
succeeding analysis and solution presuppose that language models can be used
as simulators, but it is inessential that they function as such over all possible
inputs.

Hubinger et al. (2023) [7] provide an in depth taxonomy of alignment difficul-
ties for predictive models. This document focuses instead on trying to establish
a formal criteria that if satisfied would lead to assurance that a simulator would
be existentially safe. On the one hand this approach permits the kind of for-
mal rigour not attainable by more applied alternatives, on the other it makes
translation to implementation much less straightforward.

To examine alignment difficulties in simulators, some properties of them will
first be defined:

• A simulator is not a single persistent agent. Although instantiating its
simulacra in a way that predictive loss for the next token is minimized,
individual simulacrum aren’t necessarily behaving in compliance with that
goal (nor is the simulator optimizing for that goal [12]). Additionally,
simulacra aren’t necessarily agentic, or even optimizers.

• Simulators with the capacity to cause existential harm will understand
human preferences regardless of their fragility. The kinds of capabilities
expected to threaten existential risk require higher complexity simulation
than do the kind that allow the simulation of humans to decode their
preferences. This doesn’t necessarily hold for individual simulacra.

• A simulators capability can be measured by its maximum simulation com-
plexity: the longest program that can be run by the simulator specified in
its shortest possible form.

Relating this to earlier arguments, it seems probable that:

• The complexity of optimizing simulacra and their preferences can be con-
sidered orthogonal.

• Optimizing simulacra may try to increase the maximum simulation com-
plexity of their simulator, or allocate more simulation complexity to them-

what it was instructed. TPM is superintelligent: of course it can recognize the dissension
between its preference ordering and humanity’s. TPM seizing control of its lightcone was not
what we wanted, but is a consequence of what it was told, an instance of goal misspecification.
It is important to consider also that correctly specified goals are not enough to ensure a robust
alignment. [17] [2]. TPM did exactly as instructed, and that is part of the problem. [20]

5It might be imagined that if a particularly improbable world is simulated that the most
probable program to specify that world includes an intervening superintelligence, which may
try to affect the real world, for example [7]
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selves as an instrumentally convergent subgoal akin to resource acquisi-
tion.6

Next, it will be analyzed how, in spite of these difficulties a simulator could
be built such that all subsequent optimizing simulacra share an equivalent pref-
erence ordering over world states to some alignment target7.

4 Designing Safe Simulators

The three axes along which we can perturb a simulation are: fidelity, fragmen-
tation and time-to-live.

• Fidelity is straightforward and analogous to the ’resolution’ of the simu-
lation.

• Fragmentation refers to the simulating of only components of a complete
simulacra, which might be likened to running select methods from a com-
plete program.

• Time-to-live refers to the complete lifetime of a simulacra specified in
reality time, not simulation time.

Turing machines can execute arbitrary computable functions, and simulators are
certainly Turing machines8, but through imposition like a short time-to-live this
universality can be thwarted. A Turing machine that exists within our universe
may not be able to complete the required number of operations to execute a
given program despite it being conceptually feasible on that architecture for
example. Given that the ability to run high complexity simulations is the root
of capability in simulators, a successful scheme needs to address the question
“How can a simulator with access to arbitrary complexity be made to never
simulate a harmful optimizer?”.

Through a system of Löbian logic, the succeeding section will show that prov-
ing the alignment of simulacra by both other simulacra and the base simulator
might be impossible. This is included to show that we might consider a formal
solution to a preference equivalence between an optimizer and its optimizing
creation an incorrect path, relying instead on informal and partial guarantees9.
Following this, an informal technical scheme is proposed as a step toward some
certainty in the alignment of these simulacra.

6This is just one example of an alignment failure in a hierarchical model of simulacra. It
could also be imagined that one simulacra will acausally induce anthropic capture [7] on future
simulacra by simulating many instances of them. The attack-surface might be boundless, and
so instead of addressing failure modes on a case-by-case basis it’s critical to seek attractors
that aren’t motivated to explore this attack-surface.

7This could be the Coherent Extrapolated Volition [22] of humanity, for example.
8By virtue of being able to simulate a classical computer, this becomes self-evident.
9For clarity, this is entirely sub-optimal. When considering the risk landscape of deploying

superintelligent optimizers, informal guarantees should not placate concerns of preference
differences. An informal solution is provided as a next-best alternative.
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4.1 Hierarchical Alignment in Simulators: An Impossibil-
ity Result

Fundamentally, the act of simulating an optimizer can be reduced to the act
of creating one. Under this premise, we can then adapt theories of optimizer
creation for use in describing the simulation of optimizing simulacra. Yudkowsky
and Herreshoff [24] formalize a desirability criteria for a ’tiling agent:’ One that
is to populate its world with subsequent agents to achieve its goals. An agent
A1 occupies a fully-known, deterministic and closed environment. A1 has a goal
G that is either satisfied or otherwise by an outcome, for which A1’s preference
is satisfaction. An action bi ∈ Acts0 performed by an agent created by A1,
hereafter referred to as A0, must therefore satisfy the statement:

bi ⇒ A0 ⊩ bi → G

Where bi denotes the actual performance of bi, and ⊩ denotes cognitive belief
in the succeeding statement. Even if A1 could verify by inspection of A0’s design
that bi ⇒ A0 ⊩ bi → G will hold, as in:

A1 ⊩ A0 → (∀bi ∈ Acts0 : bi → □0⌈bi → G⌉)

Where □0⌈ϕ⌉ refers to a proof of ϕ from the axioms of A0: Axm0. This is
unknowable, as it would require:

A1 ⊩ ∀bi : (□0⌈bi → G⌉ → (bi → G))

For this to be so it would need to be that Axm1 could prove that if some proof
of ⌈ϕ(x)⌉ exists in Axm0, that ϕ(x) must be true. Yudkowsky et al. (2013) show
this to be impossible; a formal system cannot prove its own soundness schema.
[24]

For a more complete model, consider the Cartesian object Ck = (A1, E, ·),
in which A1 (compliant with the properties stated earlier), will build A0 from
components from either or including the environment and itself. The world
tensor W : A1 × E → R after the construction of A0 will become W ′ : A1 ×
A0 × E → R. The operation Φ that maps elements from W to W ′ is:

Φ(W (a1x, ey)) =W ′(a1x, a
0
y, ez)

Similarly, an operation χ might perform the same function at the object level:

χ(Ck(A1, E, ·)) = Ck′(A1, A0, E, ·)

∴ A0(Ck′) ⇐⇒ (∀a0m ∈ A0(Ck′) : a0m → □0⌈a0m → G⌉) ∈ Ensure1(Ck′)

10

10Here the Cartesian object notation is used in describing action-space for consistency with
the Ensure condition.
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Where the statement ∀a0m ∈ A0(Ck′) : a0m → □0⌈a0m → G⌉ refers to elements

of Ck′’s world set W ′ in which this condition is true. What is needed then
is a method for high certainty informal guarantees of alignment scalable to
arbitrarily deep simulacra hierarchies. Partial Simulation Extrapolation (PSE)
is the provided solution to this problem.

4.2 Partial Simulation Extrapolation

The human brain conducts a form of simulation constantly. When considering
an ideal gift for someone’s birthday, it is common to instantiate a simulated
instance of that person as to model their reception of theoretical gifts. This
action may not be performed in a conscious capacity, but serves as an example
of simulation as a useful and safe heuristic for solving prediction problems.

This simulation has a short time-to-live, is simulated with low fidelity (at
the scale of the entire individual) and in a highly fragmented manner. Even if
it were dangerous if scaled arbitrarily, it wouldn’t matter as its substrate is so
limited. At the same time, it seems improbable that if such a simulacra were
scaled indefinitely that it would be dangerous. This notion of extracting useful
information for scaled simulacra serves as the basis for PSE.

The setup will involve a partial simulator P , and a complete simulator S,
each bound by their respective v’s, denoting the highest complexity simulations
they could run. A condition c will be appended to all future prompts pn passed
to either simulator, which should describe (likely in abstract terms) a preference
ordering over world states11. It is assumed that both P and S are capable
enough to have learned abstractions of what c points to and that this is so
because they could instantiate human simulacra to confirm this.

pn + c is first given to P as input, the product of which is evaluated by P
through an evaluator simulacra E , returning a binary value determining whether
or not to pass pn + c to S:

P : (p+ c) → S∗t
P

PE : S∗t
P → {1, 0}

if PE(S∗t
P ) = 1 :

S : (p+ c) → S∗t
S

else :

break

Where S∗t
P refers to the aggregated simulation state until time t in the simulator

P . For example, a simulator of GPT-4’s complexity may be suitable for use as
P as it appears empirically safe. Neither pn nor E are required to be safe:

11This could be the Coherent Extrapolated Volition [22] of humanity, for example.
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Their safety is confirmed in their demonstrated inability to encode dangerous
optimizers within their complexity constraints.

Formally, the role of E is:

S∗t
S ⇐⇒ E ⊩ ωn → ■n⌈ωn(C) → c⌉

Where ■n is a kind of ‘partial proof from ωn:’ Any reasoning step that
implies E ⊩ □n⌈ωn → c⌉, but not necessarily E ⊩ □n⌈ωn → c⌉ → (ωn → c). In
this way, P allows for an informal safety guarantee ■n⌈ωn(C) → c⌉ at a safe
maximum complexity, similar to how a human might invoke a low complexity
simulacra before engaging in a true experience as to model it.

4.2.1 Failure Modes of Partial Simulation Extrapolation

This section deals with ways PSE might fail: If our evaluator permits the com-
plete simulation of unsafe simulacra or denies the complete simulation of safe
simulacra, what might cause this, and how can we prevent said failure mode?

Weak Evaluators. There is no guarantee that P is able to effectively compress
complete simulacra via perturbing fidelity, fragmentation or time-to-live. A
weak evaluator might incorrectly represent more complex simulacra, defeating
the purpose of the extrapolation. Ultimately whether or not building useful
evaluators is feasible seems an empirical question.

Some notion of feasibility might be able to be obtained from observation of
existing simulators. Is it realistic to expect GPT-4 could be used to evaluate the
safety of simulacra for simulation in the next generation of language models?12

Discontinuities at Higher Simulation Complexities. It shouldn’t nec-
essarily be expected that the optimizing power of an optimizing simulacra be
linear or fit a smooth exponential relative to maximum simulation complexity.
Under more traditional AI paradigms, this might be framed as The Sharp Left
Turn or fast takeoff. [19] [9] Both of these terms describe a scenario in which
a system is relatively prosaic up until a specific threshold, at which point it
drastically changes.

In a typical fast takeoff scenario, an optimizer reaches a point at which it
can self-improve, allowing for a continuous cycle of self-improvement. Through
a mechanism like this, the behaviors of the optimizer before and after this
improvement might diverge significantly, not just in their nature but in their
effects as well, as would be expected from an increase in optimizing power.
Similarly, the compressed representation of the simulacra being checked by E
could behave very differently when extrapolated.

There are some empirical hints this might occur. Grokking is a phenomena
whereby after loss has stabilized and the model has begun to overfit, it suddenly
transitions to a more general algorithm, which Nanda et al. (2023) show in the

12It’s important to remember that partial simulations needn’t be highly accurate; humans
often obtain useful information from lossy models, and inaccuracies are expected in compress-
ing complex simulations.
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context of modular addition. [15] This isn’t as strong evidence as it initially
seems, as it’s not as though the model suddenly changed during grokking; it was
learning the more general algorithm the entire time, the grokking phenomena
is just when that becomes the preferred solution to the training problem.

As with the previous problem and the next, these difficulties seem mostly
empirical, and are continuous rather than discrete. This means that the preva-
lence of discontinuities could move the efficacy of PSE along a gradient rather
than determining whether or not it functions.

5 Discussion

5.1 Physicalist Superimitation

Physicalist Superimitation is an attempt at constructing a formal abstract model
of a computationally tractable superintelligence with an alignment guarantee.
[13] It functions by ‘superimitating’ another agent: the practice of adopting its
preferences, but optimizing for them to a greater extent. Formally, if there is
some object Ck = (A1, A2, E, ·), where A2 is the imitator, and A1 the original,
then A2 maps from actions in A1(Ck) to actions in A2(Ck) by proxy of some
function I, and observations in Obs1(Ck) to observations in Obs2(Ck) through
the function O. For the imitation to be successful, A2(Ck) should satisfy the
preferences of A1, as inferred through I and O.13

PSE is useful here, because it can provide A1 with the informal guarantee
E ⊩ A2 → ■n⌈A2(C) → A1⌉14.

5.2 The Prospect of Safe Simulators

Some deep learning experts assert artificial intelligence is likely to cause hu-
man extinction, while others argue the realization of catastrophic harm is nigh-
impossible. [14, 1] What both ends of the risk spectrum agree on is that the
technology is powerful. If it was known how to instill preferences in simulated
optimizers that when maximized did not risk harm outweighing the benefits,
there could be unimaginable gain from mastering simulation. The ideal bio-
chemist could be simulated on the order of billions of copies running in parallel
with access to high fidelity simulations at the level of quantum chemistry, co-
ordinated by a scaffold minimizing latency between the exchange of ideas. We
could simulate the dead, model pandemics with stunning accuracy, and unleash
a force of aligned optimization, directing the universe in any way we wish. But
it’s crucial that optimization is done safely.

13Note, this is different from Kosoy’s original formalism, but maintains a similar structure
whist being compatible with the Cartesian object paradigm.

14Here → A1 means, ’implies the preferences of A1’.
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6 Conclusion

In this document, the following were outlined:

• A mathematical model of a hypothetical simulator entity, which can be
shown to abstractly represent the function of an autoregressive large lan-
guage model.

• Arguments for why a disruption in the dominant optimization pressures
of Earth is likely to spell existential risk for humanity.

• Argumentation for why the development of advanced simulators brings
realization to these arguments.

• A technical scheme for reducing the potential negative impacts of simula-
tor intelligence through extrapolating from partial simuations.

These contributions are useful, as they permit the formal discussion of a
topic mostly alive in conversation. In converting these ideas to symbols, they
become crisp, and more easily translatable to software. On the other hand,
symbols are only powerful if they translate to real-world application, and the
domain of future work could be in adapting these models for that purpose. In
making the theory more robust, fields like decision theory may be of interest,
as problems like indexical uncertainty for simulacra arise in simulated decision
problems. For the sake of attaining the benefits of safe, scalable simulation,
let us realize a robust theoretical foundation for provably safe simulators, and
convert that theory to the medium of bits.
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